Silver(I) Sandwich Complexes of Oxa-Crowned Derivatives of Dithiomaleonitrile

Hans-Joachim Drexler, Helmut Reinke, and Hans-Jürgen Holdt*

Institute of Chemistry, University of Rostock, D-18051 Rostock, Germany

Telefax: (internat.) +49(0)381/498-1819

Received November 13, 1995

Key Words: Silver(I) sandwich complexes / Crown dithioethers, unsaturated / Bis(methylthio)maleonitrile

The coordination chemistry of the four oxa-crowned derivatives of dithiomaleonitrile mn-12S2O2, mn-15S2O3, mn-18S₂O₄, and mn-21S₂O₅ as well as of the acyclic bis(methylthio)maleonitrile mn-S2 with AgI was investigated by X-ray structural and spectroscopic methods. The 2:1 complexes (ligand/Ag^I) $[Ag(mn-12S_2O_2)_2]PF_6$, [1]PF₆, [Ag(mn- $15S_2O_3)_2$ PF₆, [2]PF₆, and [Ag(mn-S₂)₂PF₆, [6]PF₆, and the 1:1 complexes $[Ag(mn-15S_2O_3)]ClO_4$, $[3]ClO_4$, $[Ag(mn-15S_2O_3)]ClO_4$, $[Ag(mn-15S_2O_4)]ClO_4$, $[Ag(mn-15S_2O_4)]ClO_4$ $18S_2O_4)$]PF₆, [4]PF₆, and [Ag(mn-21S₂O₅)]PF₆ [5]PF₆, were obtained with AgPF₆ or AgClO₄ in MeOH. The stoichiometry of the macrocyclic AgI complexes and the coordination mode of mn- S_2O_{n+1} coronands (n = 1-4) is determined by the length of the macrocyclic oligoethylene chain. - The mncrown dithioethers $mn-12S_2O_2$ and $mn-15S_2O_3$ form with AgPF₆ the new sandwich complexes [Ag(mn-12S₂O₂)₂]PF₆, $[1]PF_6$, and $[Ag(mn-15S_2O_3)_2]PF_6$, $[2]PF_6$. $[1]PF_6$ crystallises in the triclinic space group $P\bar{1}$. In the centrosymmetric cation [1] each mn-12S₂O₂ ligand is coordinated to the Ag^I centre in an endo manner via both S atoms and one O atom. The distance of the second O atom of mn-12S₂O₂ to Ag^I is somewhat longer than a normal Ag-O_{ether} bond. The overall environment around Ag^{I} in $[1]^{+}$ is that of a distorted cubic S_4O_4 set of donors. [2]PF₆ crystallises in the monoclinic space group C2/c. In the centrosymmetric cation [2] + silver(I) is planar-coordinated by the four S atoms of both mn-15S₂O₃ molecules. The six O atoms of both mn-15S₂O₃ ligands show only long-range interactions to the Ag^I ion. They surround Ag^I almost vertically to the planar S₄ set of donors in a crown-like manner. - The crystal structures of the 1:1 complexes $[Ag(mn-18S_2O_4)]PF_{6t}$ $[4]PF_{6t}$ and $[Ag(mn-21S_2O_5)]PF_{6t}$ [5]PF6, consist of linear chain polymers. [5]PF6 forms an Nbridged chain polymer of endocyclic [Ag(mn-21S₂O₅)]⁺ units with S₁O₄N_{Nitrile} coordination at the Ag^I centre. In the 2:1 complex $[Ag(mn-S_2)_2]PF_6$, $[6]PF_6$, each $mn-S_2$ acts as a monodentate $N_{Nitrile}$ donor. - ¹³C-NMR studies in nitromethane solution confirm that the AgI ions in the complexes of the mncrown dithioethers remain coordinated. However, the Aq^I ion in complex of mn-S2 is decoordinated.

Crown thioether metal complexes can exhibit unusual coordination numbers, redox behavior, and spectroscopic properties^[1]. In the 1:1 complexes of crown thioethers 18S6 (1,4,7,10,13,16-hexathiacyclooctadecane) or bzo₂-18S6 (2,3,11,12-dibenzo-1,4,7,10,13,16-hexathiacyclooctadecane) with AgPF₆^[2,3] and in the 2:1 sandwich complex of 9S3 (1,4,7-trithiacyclononane) with AgClO₄^[4] or AgCF₃SO₃^[5] the ligands impose a hexakis(thioether) environment on Ag^I.

Ag^I has a relatively low affinity for oxygen donors although complexes containing crown ethers are known^[6-8]. Reaction of AgAsF₆ with ethylene oxide in sulfur dioxide yields the sandwich complex of 12-crown-4 with silver(I) [Ag(12-crown-4)₂](AsF₆)^[7]. Mixed thioether/ether coordination spheres on Ag^I were recently described by Blake et al. for 1:1 complexes with S/O crowns 15S₂O₃ (1,4,7-trioxa-10,13-dithiacyclopentadecane)^[9] and 18S₂O₄ (1,4,7,10-tetraoxa-13,16-dithiacyclooctadecane)^[10]. The 1:1 complex with 15S₂O₃ is a S-bridged linear chain polymer of [Ag(15S₂O₃)]⁺ units with S₂O₃S_{bridged} coordination at Ag^I, while 18S₂O₄ forms a binuclear species [Ag₂(18S₂O₄)]²⁺ in which each Ag^I is tetrahedrally coordinated by two S and two O atoms. Attempts to isolate a 2:1 complex of 15S₂O₃ with Ag^I failed. Metal-free macrocycles 15S₂O₃ and 18S₂O₄

adopt conformations in which the S donors lie in *exo* positions^[11]. On endocyclic complexation with Ag^I the conformation of the ligands must alter dramatically and this suggests that introduction of stereochemical constraints in the form of bulky or rigid groups might enhance the endocyclic coordination possibilities of mixed S/O crowns.

We synthesized the oxa-crowned derivatives of dithiomaleonitrile mn- $12S_2O_2$, mn- $15S_2O_3$, mn- $18S_2O_4^{[12]}$, and mn-21S₂O₅^[13] (for ligand abbreviations see Figure 1). In contrast to those in the saturated analogues 12S2O2, 15S2O3, and 18S₂O₄^[11], the sulfur atoms in the uncomplexed unsaturated macrocycles mn-12S₂O₂, mn-15S₂O₃^[14], and mn-18S₂O₄^[13] have restricted exodentate conformations which should enhance the formation of endocyclic complexes. This should be useful for enforcing AgI and other metal centres into unknown thioether/ether coordination spheres. In order to clarify this assumption we prepared AgI complexes of mn- S_2O_{n+1} coronands (n: 1-4) and characterised their structures by X-ray analyses and spectroscoic methods. With [Ag(mn-12S₂O₂)₂]PF₆, [1]PF₆, we obtained the first sandwich complex with a mixed thioether/ether coordination sphere. PdCl₂^[15-17], and HgCl₂ complexes^[13,18] of mn-crown dithioethers were recently described by us and Sibert et al.

FULL PAPER H.-J. Drexler, H. Reinke, H.-J. Holdt

Figure 1. Used ligands and abbreviations (mn = maleonitrile)

Preparation of the Complexes

Ag^I complexes of mn-S₂O_{n+1} coronands (n = 1-4) were obtained with AgPF₆ or AgClO₄ in MeOH. At molar ratios of 1:1 and 2:1 macrocycles and silver salts were allowed to react. Reaction of mn-12S₂O₂ with AgPF₆ affords pale yellow crystals of the 2:1 complex [Ag(mn-12S₂O₂)₂]PF₆, [1]PF₆, in high yields irrespective of the molar ratio of the reactants. [2]ClO₄ is synthetically accessible by using AgClO₄. In contrast to macrocycle mn-12S₂O₂, mn-15S₂O₃ forms 1:1-complex [Ag(mn-15S₂O₃)]PF₆ with one equiv. of AgPF₆. [Ag(mn-15S₂O₃)]PF₆ could only be isolated as an oil. We therefore prepared the 1:1 complex of mn-15S₂O₃ with AgClO₄ [Ag(mn-15S₂O₃)]ClO₄, [3]ClO₄, which readily crystallises as colourless cubes. AgPF₆ and two equiv. of mn- $15S_2O_3$ form the 2:1 complex [Ag(mn- $15S_2O_3$)₂]PF₆, [2]PF₆. Reactions of the larger macrocycles mn-18S₂O₄ and mn-21S₂O₅ with AgPF₆ at molar ratios of 1:1 and 2:1 always yield the 1:1 complexes [Ag(mn-18S₂O₄)]PF₆, [4]PF₆, and [Ag(mn-21S₂O₅)]PF₆, [5]PF₆.

A crystalline 2:1 complex $[Ag(mn-S_2)_2]PF_6$ [6]PF₆, was accessible by treatment of 1 or 2 equiv. of mn-S₂ with AgPF₆ in CH₂Cl₂/MeOH.

The silver complexes obtained are stable in air and show no appreciable sensitivity to light in the solid state. The complexes are soluble in nitromethane and acetonitrile.

IR Spectra

IR spectra of the new Ag¹ complexes in the range of $4000-400 \text{ cm}^{-1}$ show the typical ligand and anion bands. Changes in the IR spectra of the free ligands are observed for the CN stretching frequencies. Upon coordination of mn-15S₂O₃, mn-18S₂O₄, and mn-21S₂O₅ with Ag¹ in 1:1 complexes [3]ClO₄, [4]PF₆, and [5]PF₆ and of mn-S₂ to Ag¹ in the 2:1 complex [6]PF₆, the CN stretching frequencies and their number increase (see Table 1). Thus, for [5]PF₆ three CN stretching bands are observed at 2247, 2232, and 2210 cm⁻¹, as compared to two at 2210 and 2200 cm⁻¹ in the free macrocycle mn-21S₂O₅. However, there are only little changes in all CN stretching frequencies upon coordination of mn-12S₂O₂ and mn-15S₂O₃ to Ag¹ in the 2:1 complexes [1]PF₆ and [2]PF₆.

Molecular and Crystal Structures

The crystallographic data of complexes [Ag(mn-12S₂O₂)₂]PF₆, [1]PF₆; [Ag(mn-15S₂O₃)₂]PF₆, [2]PF₆;

Table 1. CN stretching frequencies in Ag^I complexes and free ligands [cm⁻¹]

Compound	$v(C=N)^{[a]}$			
[1]PF ₆	2229 (w), 2216 (w)			
$mn-12S_2O_2$	2222 (w), 2208 (m)			
[2]PF ₆	2229 (w), 2215 (m), 2202 (w)			
[3]ClO ₄	2241 (w), 2226(w), 2217 (w), 2201 (w			
$mn-15S_2O_3$	2225 (w), 2215 (m), 2204 (w)			
[4]PF ₆	2250 (w), 2230 (w), 2214 (w)			
mn-18S ₂ O ₄	2225 (w), 2210 (m)			
[5]PF ₆	2247 (w), 2232 (w), 2210 (w)			
mn-21S ₂ O ₅	2210 (m), 2200 (m)			
[6]PF ₆	2239 (w), 2224 (w), 2210 (m),			
	2205 (m), 2201 (m)			
mn-S ₂	2208 (m), 2200 (m)			

[a] In KBr.

 $[Ag(mn-21S_2O_5)]PF_6$, $[5]PF_6$, and $[Ag(mn-S_2)_2]PF_6$, $[6]PF_6$, are summarised in Table 2.

$$[Ag(mn-12S_2O_2)_2]PF_6$$
, [1]PF₆

The asymmetric unit contains two half-cation molecules and one anion, thus forming a unit cell with two slightly different complex molecules A and B. The silver atoms are found in special positions. Both A and B are 2:1 ligands towards AgI species, in which AgI is sandwiched between two mn-12S₂O₂ molecules (Fig. 2: complex A). The corresponding dimensions of complex molecules A and B are very similar. In the centrosymmetric complex cation [1]⁺ each mn-12S₂O₂ ligand is coordinated to the Ag^I centre in an endo manner via both S atoms [2.667(1)-2.821(1)] A and one O atom [A: 2.591(3), B: 2.635(4) A]. The bond lengths for Ag-S agree reasonably well with corresponding values of AgI complexes of crown thioethers[2,4,5,19-21] and S/O mixed-crowns^[9,10] which lie usually in the range of 2.4-2.8 Å. The Ag-O distances fall in the range of Ag-O bond lengths, 2.4-2.65 Å, observed in macrocyclic AgI complexes of crown ethers^[6-8] and S/O mixed crowns^[9,10]. The distance of the second O atom of mn-12S₂O₂ to Ag^I [A: 2.811(3), B: 2.861(5) Å] is longer than a normal Ag-O_{ether} bond^[6-10]. Thus, the overall environment around Ag^I in [1]⁺ is that of a distorted cubic S₄O₄ set of donors. The anion PF₆ has no contact with Ag^I.

$[Ag(mn-15S_2O_3)_2]PF_6, [2]PF_6$

Half a molecule of the complex cation and half of the anion molecule form the asymmetric unit of the crystal lattice. Both the Ag^I ion and the central P atom of the anion are in special positions. In the centrosymmetric cation [2]⁺ silver(I) is complexed in a sandwich fashion by two mn-15S₂O₃ molecules (Fig. 3a). Each mn-15S₂O₃ ligand is coordinated to the Ag^I centre via both S atoms [2.654(2), 2.717(1)] giving a planar arrangement of four S donors at the metal ion.

Silver(I) Sandwich Complexes

Table 2. Summary of crystallographic details, data collection and refinement

Compound	[1]PF ₆	[2]PF ₆	[5]PF ₆	[6]PF ₆		
Formula	C ₂₀ H ₂₄ AgF ₆ N ₄ O ₄ PS ₄	C24H32AgF6N4O6PS4	C ₁₆ H ₂₄ AgF ₆ N ₂ O ₅ PS ₂	C ₁₂ H ₁₂ AgF ₆ N ₄ PS ₄		
Form. wght.	765.51	853.61	641.33	593.33		
Cryst. size [mm]	$0.5 \times 0.23 \times 0.23$	$0.76 \times 0.32 \times 0.3$	$0.66 \times 0.38 \times 0.22$	0.64 x 0.64 x 0.24		
Cryst. system	triclinic	monoclinic	orthorhombic	triclinic		
Space group	PĪ	C2/c	$P2_12_12_1$	PĪ		
a [Å]	9.299(1)	19.396(4)	11.661(2)	9.219(1)		
b [Å]	11.211(1)	9.721(2)	12.924(2)	10.865(1)		
c [Å]	16.237(1)	19.490(4)	16.003(1)	11.891(1)		
α [°]	98.11	90	90	104.72		
β [°]	102.59(1)	114.39(3)	90	101.52(1)		
γ [°] γ	114.45(1)	90	90	109.69(1)		
V [Å ³]	1452.0(3)	3346.9(2)	2411.8(6)	1030.0(2)		
Z	ž ´	4 `´	4	$\hat{2}$		
$d_{c.}[Mg/m^3]$	1.751	1.694	1.766	1.913		
μ [mm ⁻¹]	1.11	0.98	1.15	1.52		
F(000)	768	1728	1288	584		
T [°K]	298	298	213	298		
Radiation	$\lambda = 0.71073 \text{ Å (Mo-K}_{\alpha})$, graphite monochromator					
Diffractometer	Siemens P4					
Data collecting mode	omega-scan					
Scan range (2Θ) [°]	4.14-45.00	4.58-45.00	4.06-45.00	3.72-45.00		
hkl range	0/10, -11/10, -17/17	0/22, 0/11,-22/ 20	-13/13, 15/15, -19/19	0/10, -11/10, -13/13		
Refl. collected	4026	2267	3628	2886		
Refl. independent	3746	2191	3103	2685		
Refl. observed	3277	1817	2939	2456		
Observ. criterion	2σ (I)					
Refined param.	410	210	322	300		
R1 (2σ (I))	0.0391	0.0471	0.0339	0.0374		
R1 (all data)	0.0455	0.0580	0.0368	0.0407		
wR2 (all data)	0.0983	0.1296	0.0824	0.0997		
GooF	1.027	_1.029	1.050	1.099		

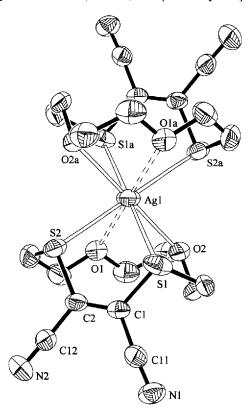
The overall coordination geometry at Ag^I cannot be described in simple terms because the three O atoms of mn-15S₂O₃ show long-range interactions [3.339(4), 3.336(4), 3.077(4) Å]. The Ag^I centre is surrounded by the six O atoms of both mn-15S₂O₃ ligands almost vertically to the planar S₄ set of donors in a crown-like manner (Fig. 3b). The least-square plane defined by the six macrocyclic O atoms and the planar AgS_4 moiety cut at an angle of 80.23°. As already observed for sandwich complex [1]⁺, the PF₆ anion has no contact with the Ag^I centre.

$[Ag_n(mn-21S_2O_5)_n](PF_6)_n$, [5]PF₆

The crystal structure of [5]PF₆ consists of a linear chain polymer of endocyclic 1:1 units $[Ag(mn-21S_2O_5)]^+$ with links between the units provided by a $Ag-N_{nitrile}$ bond (Fig. 4). The Ag^1 ion in $[Ag_n(mn-21S_2O_5)_n]^{n+}$ is best described as being at the centre of a distorted pentagonal pyramidal array of one S, four O, and one N donor atoms. Four of the five macrocyclic O atoms are coordinated [2.451(4)-2.628(4) Å] along with only one of the two available S atoms [2.602(1) Å]. The sixth ligand is an N atom from the nitrile moiety of an adjacent $[Ag(mn-21S_2O_5)]^+$ unit [2.367(5) Å]. The uncoordinated atoms S2 and O5 are at distances of 4.687 and 5.088 Å from the Ag^1 centre.

 $[Ag(mn-S_2)_2]PF_6, [6]PF_6$

[6]PF₆ crystallises in the triclinic space group $P\bar{1}$ with two different ligand molecules per asymmetric unit. Each Ag^I ion is bound to two mn-S₂ ligands by two Ag-N_{nitrile} bonds [2.242(4), 2.245(4) Å] (Fig. 5). The second nitrile functionality and one S atom of each ligand are close enough to display weak interaction with silver(I) [Ag1···N12″ 2.693(6) and Ag1···S11′ 2.872(3) Å] and to distort the N-Ag-N coordination from linear to a bent one [158.0(2)°]. Moreover, there are two Ag···F distances [3.04(2), 3.19(3) Å] indicating weak interactions of the anion PF₆ with the Ag^I centre (van der Walls distance Ag···F 3.86 Å). One S atom of each mn-S₂ remains uncoordinated [5.732(1) Å].


NMR-Spectroscopic Studies

 $^{1}\text{H-}$ and $^{13}\text{C-NMR}$ spectra of the Ag^{I} complexes and ligands were recorded in MeNO₂. In the $^{13}\text{C-NMR}$ spectra of the Ag^{I} mn-crown dithioether complexes all of the macrocyclic methylene carbon resonances are shifted relative to those in the spectra of the free macrocycles (see Table 3). The ^{13}C spectrum of [6]PF₆ shows only uncoordinated mn-S₂ indicating complete dissociation of this complex.

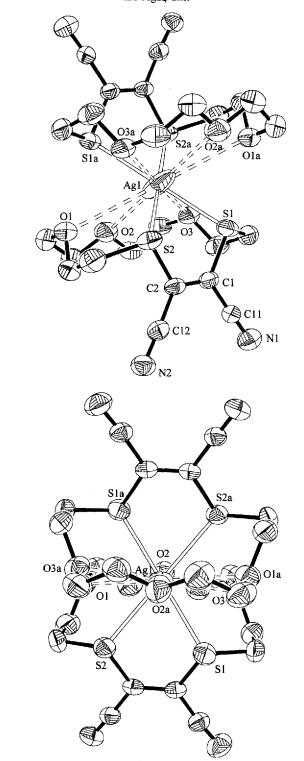
FULL PAPER

H.-J. Drexler, H. Reinke, H.-J. Holdt

Figure 2. Molecular structure of $[Ag(mn-12S_2O_2)_2]^+-A$ in [1]PF₆ [H atoms omitted; ORTEP, 50% probability level]^[a]

 $^{[a]}$ Selected bond lengths [Å] and angles [°]: [1]*-A: Ag1-S1 2.789(1), Ag1-S2 2.779(1), Ag1-O2 2.591(3), Ag1···O1 2.811(3); S1-Ag1-S2 71.5(1), O2-Ag1-S1 69.1(1), O2-Ag1-O1 62.5(1), O1-Ag1-S2 66.5(1); the corresponding parameters of [1]*-B: Ag2-S3 2.821(1), Ag2-S4 2.667(1), Ag2-O3 2.635(4), Ag2···O4 2.861(5); S3-Ag2-S4 74.6(1), O3-Ag2-S4 70.9(1), O3-Ag2-O4 60.1(2), O4-Ag2-S3 64.4(1).

In the ¹H-NMR spectra of macrocyclic Ag^I complexes all methylene proton resonances are shifted to lower frequencies upon complexation (CH₂S: $\delta = 0.17-0.32$, CH₂O: $\delta = 0.01-0.24$).


Discussion

The stoichiometry of the macrocyclic Ag^I complexes and the coordination mode of oxa-crowned derivatives of dithiomaleonitrile mn-12S₂O₂ to mn-21S₂O₅ are determined by the length of the macrocyclic oligooxyethylene chain.

Ag^I complexes of mn-crown dithioethers mn- $12S_2O_2$ – mn- $21S_2O_5$ were obtained by reaction of one or two equiv. of macrocycle with AgPF₆ or AgClO₄ in MeOH. Whilst the 12-membered mn- $12S_2O_2$ as the smallest macrocycle in this range forms the 2:1 complex [1]PF₆ only with the larger macrocycles mn- $18S_2O_4$ and mn- $21S_2O_5$ the 1:1 complexes [4]PF₆ and [5]PF₆ are obtained. The medium-size mn-crown dithioether mn- $15S_2O_3$ forms both a 2:1 complex [2]PF₆ and a 1:1 complex [3]ClO₄.

In the IR spectra of complexes [3]ClO₄-[6]PF₆ the highest v(CN) frequencies are 16-37 cm⁻¹ higher than those of the free ligands and indicate the coordination of nitrile to

Figure 3. Molecular structure of $[Ag(mn-15S_2O_3)_2]^+$ in $[2]PF_6$ [H atoms omitted; ORTEP, 50% probability level]; in two views a) parallel to the macrocyclic plane of $mn-15S_2O_3$ b) perpendicular to the AgS_4 unit^[a]

[a] Selected bond lengths [Å] and angles [°]: Ag1-S1 2.654(2), Ag1-S2 2.717(1), $Ag1\cdotsO1$ 3.339(4), $Ag1\cdotsO2$ 3.336(4), $Ag1\cdotsO3$ 3.077(4); S1-Ag1-S2 70.9(1).

Ag^I. Kubota and Johnston found that the shift of the v(CN) frequencies at 2249 cm⁻¹ in pure glutaronitrile (gn) to 2274

Figure 4. Part of crystal structure of [Ag_n(mn-21S₂O₅)_n]ⁿ⁺ in [5]PF₆ [H atoms omitted; ORTEP, 50% probability level]^[a]

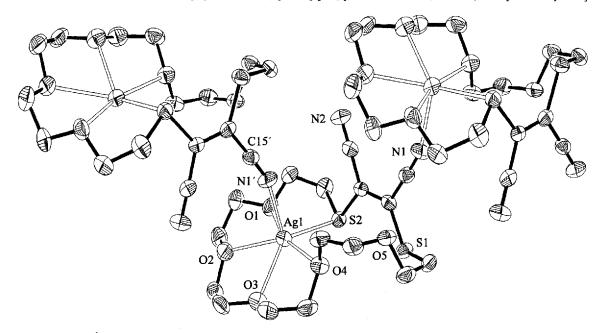


Figure 5. Part of crystal structure of $[Ag(mn-S_2)_2]^+$ in $[6]PF_6$ [without atom positions of lower s.o.f.; ORTEP, 50% probability level]^[al]

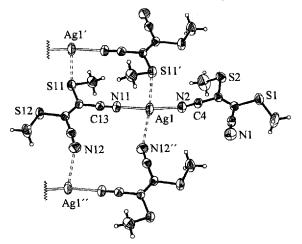


Table 3. Selected ¹³C-NMR data of Ag¹ complexes and ligands in MeNO₂

Compound	SCH ₂	SCH ₂ CH ₂ O	OCH ₂ CH ₂ O
[1]PF ₆	37,5	66.3	68.9
$mn-12S_2O_2$	37.2	71.5	69.7
[2]PF ₆	37.0	69.9	71.0, 71.4
[3]ClO ₄	38.1	67.6	70.8, 71.0
$mn-15S_2O_3$	36.3	70.9	71.2, 71.7
[4]PF ₆	37.0	68.6	70.6, 71.1, 71.5
mn-18S ₂ O ₄	36.4	70.4	71.7, 71.8, 71.9
[5]PF ₆	38.5	68.1	70.26, 70.33, 71.1, 71.4
mn-21S ₂ O ₅	36.8	70.0	71.6, 71.9, 72.0, 72.1

 $^{[a]}$ Selected bond lengths [Å] and angles [°]: Ag1-N11 2.242(4), Ag1-N2 2.245(4), Ag1...S11' 2.872(3), Ag1...N12" 2.693(6); N2-Ag1-N11 158.0(2), Ag1-N2-C4 166.9(4), Ag1-N11-C13 176.9(4).

cm⁻¹ in the complex [Ag(gn)₂]ClO₄ is indicative of Ag-N bonds^[22].

In order to clarify the whole coordination mode of mn-crown dithioethers and acyclic mn-S₂ in the synthesized Ag^I complexes, X-ray analyses were carried out. The crystal structure determination of [1]PF₆ and [2]PF₆ revealed that [1]⁺ and [2]⁺ are the centrosymmetric sandwich complex cations [Ag(mn-12S₂O₂)₂]⁺ and [Ag(mn-15S₂O₃)₂]⁺. In [1]⁺ each 12-membered mn-12S₂O₂ molecule acts as a tridentate ligand through two S and one O donor. The second O donor of mn-12S₂O₂ is near enough to Ag^I to display long-

range interactions with the metal ion forming an overall coordination sphere of four thioether and four ether donors at the Ag^I centre (Fig. 2). A comparison of structural features of the free ligand mn-12S₂O₂^[14] and the complexed ligand in [1]⁺ indicates that there is relatively little distortion of the ligand upon complexation. In free mn-12S₂O₂ the exodentate orientation of the sulfur atoms is restricted since the sulfur atoms are in an integral part of the rigid 1,2-dicyano-1,2-dithioethene unit. A measure of this intrinsic property is the angle between the middle plane of the atoms of the ring fragment S1,C8···C3,S2. It amounts in free mn-12S₂O₂ to 70.2(1)° and in complexed mn-12S₂O₂ to 87.1(1) and 77.6(1)° for [1]⁺-A and [1]-B. This means that for free mn-12S₂O₂ the

orientation of both S donors for coordinating Ag^I in [1]⁺ is preorganised.

15-Membered mn-crown dithioether mn-15S₂O₃ also change its structural dimensions only slightly upon sandwich complexation with Ag¹. In marked contrast to [1]⁺, the Ag¹ in [2]⁺ is only coordinated by the four S donors of both mn-15S₂O₃ molecules giving an unusual planar S₄ environment around d¹⁰ ion Ag^I (Fig. 3). Such a fragment is also formed in [1]+, but moreover additional apical Ag-O bonds are observed. In [2]⁺ all six O atoms of both mn-15S₂O₃ molecules which surround Ag^I in a crown-like manner are too far away from the AgI centre to form Ag-O bonds. But the Ag...O long-range interactions to the AgI centre should stabilise the sandwich structure [2]⁺, too. The AgI ion is too small to form Ag-O bonds with the 15membered mn-15S₂O₃ in [2]⁺. Anisotropic displacement parameters of the Ag ion exceed those of all other atoms in the complex cation [2]⁺ and yield a thermal ellipsoid elongated perpendicular to the AgS₄ plane (Fig. 3a). This elongation may reflect mobility of the silver out of the "uncomfortable" AgS₄ plane into the direction of the O donors. None of the other crystal structures show this effect.

The crystal structures of 1:1 complexes [3]ClO₄ and [4]PF₆ are very similar to those of [Ag(mn-15S₂O₃)]BF₄ and [Ag(mn-18S₂O₄)₂]BF₄, recently described by Sibert et al. [²³]. Complex [3]ClO₄ crystallises as [Ag(mn-15S₂O₃)]BF₄ with two molecules per asymmetric unit. Both molecules are endocyclic 1:1 species with one as the monomeric form [Ag(Y)(mn-15S₂O₃)] (Y = ClO₄, BF₄, resp.) and the other as part of a polymer chain [Ag_n(mn-15S₂O₃)_n]ⁿ⁺ in which adjacent units are connected by a Ag-N_{nitrile} bond. The crystal structures of complex [4]PF₆ and [Ag(mn-18S₂O₄)₂]BF₄ consist of a linear chain polymers. As in the polymeric form of [3]ClO₄, endocyclic 1:1 units are bridged by a Ag-N_{nitrile} bond. Selected bond lengths and distances of [3]ClO₄ and [4]PF₆ are compared with the corresponding data of the complexes of Sibert in Table 4^[24].

The crystal structure of 1:1 complex [5]PF₆ consists of a linear chain polymer, too (Fig. 4). As mn-18S₂O₄ in [4]PF₆ and mn-15S₂O₃ in the polymeric form of [3]ClO₄, the mn-crown dithioether mn-21S₂O₅ acts in [5]PF₆ as bridging ligand forming an N-bridged polymer chain [Ag_n(mn-21S₂O₅)_n]ⁿ⁺ consisting of endocyclic 1:1 units.

In the chain polymers of [3]ClO₄, [4]PF₆, and [5]PF₆ only one nitrile moiety of the mn-crown dithioether is coordinated to the Ag^I centre, the other remaining free. This is in accordance with the observation in the IR spectra that on coordination of mn-15S₂O₃, mn-18S₂O₄, and mn-21S₂O₅ with Ag^I in 1:1 complexes, the CN stretching modes are shifted towards higher wave number and increase in number.

Comparison of the coordination mode of mn-crown dithioether mn- $12S_2O_2$ – mn- $21S_2O_5$ in the complexes [1]PF₆ – [5]PF₆ revealed that with longer oligooxyethylene chain the affinity of Ag^I for sulfur atoms of the dithiomaleonitrile unit decreases. Whereas in sandwich complexes [1]⁺ and [2]⁺ and in 1:1 complex [3]ClO₄ both S donors are coordinated to Ag^I, there is only one S donor coordinated to Ag^I

Table 4. Selected interatomic distances [Å] for [Ag(mn-15S₂O₃)]Y and [Ag(mn-18S₂O₄)]Y (Y = ClO₄, BF₄)

Complex	[Ag(mn-15S ₂ O ₃)]Y		[Ag(mn-18S ₂ O ₄)]Y		
	ClO ₄	$BF_4^{[23]}$	PF_6	$BF_4^{[23]}$	
	Monome	ric Form			
Ag-S1	2.727(4)	2.732(2)			
Ag-S2	2.745(4)	2.718(2)			
Ag-O1	2.60(1)	2.750(6)			
Ag-O2	2.44(1)	2.399(5)			
Ag-O3	2.73(1)	2.579(6)			
Ag-OClO ₃	2.43(2)				
Ag-FBF ₃		2.46(1)			
	Polymeric Form				
Ag-S1	2.682(4)	2.711(2)	3.411(3)	3.315(3)	
Ag-S2	2.727(3)	2.683(2)	2.560(2)	2.533(3)	
Ag-O1	2.72(2)	2.802(6)	2.865(6)	2.859(1)	
Ag-O2	2.56(1)	2.516(7)	2.654(5)	2.714(11	
Ag-O3	2.85(2)	2.682(7)	2.540(5)	2.533(3)	
Ag-O4			2.594(5)	2.593(11	
Ag-N1'	2.29(1)	2.276(6)	2.345(5)	2,310(10	

in [4]PF₆ and [5]PF₆. This should be a result of the larger number of macrocyclic O donors in mn-18S₂O₄ and mn-21S₂O₅ which can successfully compete with one S donor at the AgI centre. If only the dithiomaleonitrile moiety interacts with Ag1 as it was approached by treatment of one or two equiv. of mn-S₂ with AgPF₆, the 2:1 complex [6]PF₆ is always formed in which each mn-S2 acts as a monodentate N_{nitrile} donor (Fig. 5). Both S atom of mn-S₂ are not bound to the AgI centre as it was assumed for [Ag(mn-S₂)₂]ClO₄^[25]; only one S atoms shows a longe-range interaction with the AgI ion. These results are in accordance with the earlier observations that the 1,2-dithioethene moiety of dithiomaleonitrile derivatives is a relatively weak chelate unit due to the strong electron-withdrawing effect of the cyano groups^[25]. Nevertheless, as ¹³C-NMR studies confirmed, the mn-crown dithioethers remain coordinated to the AgI centres in nitromethane solutions. The number of 13 C signals is indicative of C_{2h} symmetry of average structures of 2:1 complexes $[1]^+$ and $[2]^+$ and of C_s symmetry of those of 1:1 complexes [3]⁺, [4]⁺, and [5]⁺. The carbon methylene resonances next to the S atoms are shifted downfield by only 0.3-1.8 ppm, indicating a very small polarisation of the C-S bond by means of Ag^I.

The synthesis of Ag^I sandwich complexes [1]PF₆ and [2]PF₆ and our earlier results^[15-17] show that the incorporation of the dithiomaleonitrile fragment into smaller crown-like macrocycles can profit from the unique coordination potential of this 1,2-dithioethene unit. It can be assumed that the mn-crown dithioethers mn-12S₂O₂ and mn-15S₂O₃ should be useful ligands for the synthesis of other metal complexes with sandwich or half-sandwich arrangement with novel thioether/ether mixed coordination spheres. The larger homologues in this range, e.g. mn-18S₂O₄ and mn-21S₂O₅, can probably be useful for the synthesis of heterobimetallic complexes.

H.-J. D. thanks the *Böckler Stiftung* for a scholarship. We thank Dr. M. Michalik and H. Baudisch from the Institut für Organische Katalyseforschung e.V. an der Universität Rostock for recording the NMR and MS spectra, resp.

Experimental

All operations were carried out under argon by using Schlenk techniques. Solvents were dried by conventional methods. – NMR: Bruker AC 250 or Bruker ARX 300. – IR: Nicolet 205 FT-IR. – MS: Intectra AMD 402, FAB positiv with NBA as matrix substance.

 $[Ag(mn-12S_2O_2)_2]PF_6$ ([1]PF₆): To a solution of 76.8 mg (0.3) mmol) of mn-12S₂O₂ in 12 ml of MeOH a solution of 37.8 mg (0.15 mmol) of AgPF₆ in 3 ml of MeOH is added. The yellow solution is kept at 0°C for 12 h. The pale yellow both rhombic and rod-like crystals are filtered off and washed with 2 ml of MeOH. A rod-like crystal was used for single-crystal X-ray structural analysis. The rhombic species were either intergrown or twinned. - Yield 92 mg (83%), m.p. 218-225 °C (dec.) (MeOH). – IR (KBr): $\tilde{v} =$ 2229 (w) and 2216 (w) (CN), 1517 (w), (C=C), 1166 (w), 1140 (s), 1135 (s) and 1103 (m) (COC), 897 (w), 868 (m), 840 (s) and 559 (m) cm⁻¹ (PF). - ¹H NMR (CD₃NO₂): $\delta = 3.56$ (m, SCH₂, 4H), $3.77 \text{ (m, SCH}_2\text{C}H_2\text{O, 4H)}, 3.84 \text{ (s, OCH}_2\text{C}H_2\text{O, 4H)}. - {}^{13}\text{C NMR}$ (CD_3NO_2) : $\delta = 37.5$ (SCH₂), 66.3 (SCH₂CH₂O), 68.9 (OCH₂- CH_2O), 113.7 (CN), 126.4 (C=C). - MS; m/z (%): 621 (28) [[1]⁺], 365 (100) [[1]⁺ - mn-12S₂O₂]. - $C_{20}H_{24}AgF_6N_4O_4PS_4$ (765.5): calcd. C 31.38, H 3.16, N 7.32; found C 31.27, H 3.12, N 7.11.

[Ag(mm-12S₂O₂)₂]ClO₄ ([1]ClO₄): To a solution of 76.8 mg (0.3 mmol) of mn-12S₂O₂ in 12 ml of MeOH a solution of 31.2 mg (0.15 mmol) of AgPF₆ in 3 ml of MeOH is added. The yellow solution is kept at 0 °C for 12 h. The pale yellow rod-like crystals are filtered off and washed with 2 ml of MeOH, yield 87 mg (80%), m.p. 236–238 °C (dec.) (MeOH). – IR (KBr): \tilde{v} = 2226 (w) and 2218 (w) (CN), 1512 (w) (C=C), 1138 (s), 1122 (s), 1104 (s), 1096 (s), 1087 (s) and 1056 (w) (COC) (ClO), 625 (m) (ClO). – ¹H NMR (CD₃NO₂): δ = 3.54 (m, SCH₂, 4H), 3.76 (m, SCH₂CH₂O, 4H), 3.82 (s, OCH₂CH₂O, 4H). – ¹³C NMR (CD₃NO₂): δ = 37.4 (SCH₂), 66.6 (SCH₂CH₂O), 68.9 (OCH₂CH₂O), 113.8 (CN), 126.4 (C=C). – MS; m/z (%): 621 (16) [[1]⁺], 367 (100) [[1]⁺ – mn-12S₂O₂]. – C₂₀H₂₄AgClN₄O₈S₄ (720.0): calcd. C 33.36, H 3.36, N 7.78; found C 33.51, H 3.22, N 7.53.

 $[Ag(mn-15S_2O_3)_2]PF_6$ ([2]PF₆): To a solution of 90 mg (0.3) mmol) of mn-15S₂O₃ in 24 ml of MeOH a solution of 38 mg (0.15 mmol) of AgPF₆ in 3 ml of MeOH is added. The solution is kept in the dark at room temp. By slow concentration of the methanol solution to 10% of its original volume during a period of 4 weeks crystals suitable for X-ray analysis grow. The crystals are filtered off and washed with 1 ml of MeOH, yield 95 mg (74%), m.p. 120-152 °C (dec.) (MeOH). – IR (KBr): $\tilde{v} = 2229$ (w), 2215 (m) and 2202 (w) (CN), 1508 (m) (C=C), 1170 (m), 1143 (s), 1129 (s), 1119 (s) and 1098 (m) (COC), 869 (m), 844 (s) and 559 (m) cm⁻¹ (PF). $- {}^{1}H$ NMR (CD₃NO₂): $\delta = 3.49$ (t, SCH₂, 4H), 3.67 (m, OCH₂CH₂O, 8H), 3.76 (t, SCH₂CH₂O, 4H). - ¹³C NMR (CD_3NO_2) : $\delta = 37.0$ (SCH₂), 69.9 (SCH₂CH₂O), 71.0 and 71.4 (OCH₂CH₂O), 114.0 (CN), 123.6 (C=C). - MS; m/z (%): 709 (7) $[[2]^+]$, 409 (100) $[[2]^+$ - mn-15S₂O₃]. - C₂₄H₃₂AgF₆N₄O₆PS₄ (853.6): calcd. C 33.77, H 3.78, N 6.56; found C 33.65, H 3.75, N 6.37.

 $[Ag(mn-15S_2O_3)]$ $[ClO_4]$ ([3]ClO₄): To a solution of 75 mg (0.25 mmol) of mn-15S₂O₃ in 10 ml of MeOH a solution of 52 mg (0.25 mmol) of AgClO₄ in 5 ml of MeOH is added. The reaction mixture

is kept in the dark at room temp. After 3 d pale yellow crystals suitable for X-ray analysis are filtered off and washed with 2 ml of MeOH, yield 89 mg (70%), m.p. 136–142 °C (dec.) (MeOH). – IR (KBr): $\tilde{v}=2241$ (w), 2226 (w), 2217 (w) and 2201 (w) (CN), 1524 (m) and 1504 (w) (C=C), 1169 (w), 1108 (s), 1099 (s), 1083 (s) and 1042 (m) cm⁻¹ (COC) (ClO) 622 (m) (ClO). – ¹H NMR (CD₃NO₂): $\delta=3.63$ (t, SCH₂, 4H), 3.82 (s, OCH₂CH₂O, 8 H), 3.83 (t, SCH₂CH₂O, 4H). – ¹³C NMR (CD₃NO₂): $\delta=38.1$ (SCH₂), 67.6 (SCH₂CH₂O), 70.8 and 71.0 (OCH₂CH₂O), 112.9 (CN), 123.7 (C=C). – MS; m/z (%): 409 (100) [[3]⁺]. – C₁₂H₁₆AgCIN₂O₇S₂ (507.7): calcd. C 28.39, H 3.18, N 5.52; found C 28.44, H 3.05, N 5.43.

 $[Ag(mn-18S_2O_4)]PF_6$ ([4]PF₆): To a solution of 86 mg (0.25) mmol) of mn-18S₂O₄ in 10 ml of MeOH a solution of 63 mg (0.25 mmol) of AgPF₆ in 5 ml of MeOH is added. The solution is kept in the dark at room temp. By slow concentration of the methanol solution to 5% of its original volume during a period of 4 weeks orange crystals suitable for X-ray analysis grow. The crystals are filtered off and washed with 1 ml of MeOH, yield 91 mg (61%), m.p. 180-190 °C (dec.) (MeOH). – IR (KBr): $\tilde{v} = 2250$ (w), 2230 (w) and 2214 (w) (CN), 1510 (w) (C=C), 1175 (w), 1108 (s), 1095 (s) and 1085 (m) (COC), 878 (m), 839 (s), 799 (w) and 558 (m) cm^{-1} (PF). $- {}^{1}H$ NMR (CD₃NO₂): $\delta = 3.57$ (m, SCH₂, 4H), 3.73 (m, OCH₂CH₂O, 8H), 3.76 (s, OCH₂CH₂O, 4H), 3.82 (m, $SCH_2CH_2O_1$, 4H). - ¹³C NMR (CD₃NO₂): δ = 37.0 (SCH₂) 68.6 (SCH₂CH₂O), 70.6, 71.1 and 71.5 (OCH₂CH₂O), 113.5 (CN), 123.6 (C=C). - MS; m/z (%): 453 (100) [[4]⁺]. - $C_{14}H_{20}AgF_6N_2O_4PS_2$ (597.3): calcd. C 28.15, H 3.38, N 4.69; found C 27.99, H 3.40, N 4.70.

 $[Ag(mn-21S_2O_5)]PF_6$ ([5]PF₆): To a solution of 78 mg (0.2) mmol) of mn-21S₂O₅ in 8 ml of MeOH a solution of 51 mg (0.2 mmol) of AgPF₆ in 4 ml of MeOH is added. The solution is kept in the dark while it is stirred at 50°C for 1 h. The reaction mixture is then kept in the dark at room temp. After 2 d pale pink crystals suitable for X-ray analysis are filtered off and washed with 1 ml of MeOH, yield 118 mg (91%), m.p. 184-186°C (dec.) (MeOH). -IR (KBr): $\tilde{v} = 2247$ (w), 2232 (w) and 2210 (w) (CN), 1510 (w) (C=C), 1175 (m), 1141 (s), 1122 (s), 1114 (s), 1093 (s) and 1064 (m) cm^{-1} (COC), 881 (m), 838 (s) and 558 (m) cm^{-1} (PF). $- {}^{1}H$ NMR (CD₃NO₂): $\delta = 3.63$ (m, SCH₂, 4H), 3.78 (s, OCH₂CH₂O, 4H), 3.88 (m, OCH₂CH₂O, 12H), 3.88 (t, SCH₂C H_2 O, 4H). – ¹³C NMR (CD₃NO₂): $\delta = 38.5$ (SCH₂), 68.1 (SCH₂CH₂O), 70.26, 70.33, 71.1 and 71.4 (OCH₂CH₂O), 113.7 (CN), 125.7 (C=C). -MS; m/z (%): 497 (100) [[5]⁺]. - $C_{16}H_{24}AgF_6N_2O_5PS_2$ (641.3): calcd. C 29.97, H 3.77, N 4.37; found C 29.76, H 4.16, N 4.12.

[Ag(mn-S₂)₂]PF₆ ([6]PF₆): A solution of 63 mg (0.25 mmol) of AgPF₆ in 5 ml of MeOH is added to a solution of 85 mg (0.5 mmol) of mn-S₂ in 5 ml of CH₂Cl₂. The solution is kept in the dark while being stirred at room temp. for 1 h. Then the solution is reduced to a volume of 5 ml at 10 Torr and kept at 0 °C. After 5 d yellow rhombic crystals are filtered off and washed with 2 ml of MeOH, yield 96 mg (65%), m.p. 195–205 °C (dec.) (CH₂Cl₂/MeOH). – IR (KBr): \tilde{v} = 2239 (w), 2224 (w), 2210 (m), 2205 (m) and 2201 (m) (CN), 1506 (w) and 1496 (m) (C=C), 869 (s), 839 (s) and 560 (m) cm⁻¹ (PF). – ¹H NMR (CD₃NO₂): δ = 2.77 (s, SCH₃, 6H). – ¹³C NMR (CD₃NO₂): δ = 18.5 (SCH₃), 113.5 (CN), 123.2 (C=C). – MS; mlz (%): 449 (16) [[6]⁺]. – C₁₂H₁₂AgF₆N₄PS₄ (593.3): caled. C 24.29, H 2.04, N 9.44; found C 24.54, H 2.01, N 5.19.

Crystal Structure Determinations: Crystals of the complexes [1]PF₆, [2]PF₆, [5]PF₆, and [6]PF₆ were investigated with a Siemens P4 diffractometer after taking a rotational photo and performing

a photo search to find a suitable reduced cell. The structures were solved by direct methods (XS programme for crystal structure solution, version 4.2 for MSDOS, Copyright 1990 Siemens Analytical X-ray Inst. Inc.) and refined by the full-matrix least-squares method of SHELXL-93^[27]. For [Ag(mn-21S₂O₅)]PF₆ the temperature was set to 213 K at the controller unit; however, for refinement calculations a temperature of 223 K was assumed, thus taking into consideration the usual temperature gradient between nozzle and crystal. The nonhydrogen atoms were refined anisotropically. The hydrogen atoms were placed into theoretical positions and were refined by using the riding model. The weighting scheme was calculated according to $\omega = 1/[\sigma^2(F_0^2) + (0.0334 P)^2 + 1.8592 P]$ for [Ag(mn-12S₂O₂)₂]PF₆, $\omega = 1/[\sigma^2(F_0^2) + (0.0424 P)^2 + 12.1701 P]$ for $[Ag(mn-15S_2O_3)_2]PF_6$, $\omega = 1/[\sigma^2(F_0^2) + (0.0293 P)^2 + 0.00 P]$ for $[Ag(mn-21S_2O_5)]^+$ and $\omega = 1/[\sigma^2(F_0^2) + (0.0451 P)^2 + 1.6641$ P] for $[Ag(mn-S_2)_2]PF_6$, where $P = (Fo^2 + 2Fc^2)/3$ in all cases.

To be on the safe side absorption correction calculations were performed, although we did not expect much influence, since the absorption coefficient is fairly low in all cases. Indeed, the calculations did not yield a better quality of the findings.

The most important details are compiled in Table 2.

Further details of the crystal structure investigations are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, on quoting the depository numbers CSD-404454 [(1)PF₆], -404455 [(2)PF₆], -405099 [(5)PF₆] or -404458 [(6)PF₆], the names of the authors, and the journal citation.

[1] [1a] S. R. Cooper, S. C.Rawle, Struct. Bonding 1990, 72, 1. – [1b] A. J. Blake, M. Schröder, Adv. Inorg. Chem. 1990, 35, 1.

[2] A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde, M. Schröder, Polyhedron 1989, 8, 513.

[3] D. Sellmann, H.-P. Neuner, R. Eberlein, M. Moll, F. Knoch, Inorg. Chim. Acta 1990, 175, 231.

[4] H.-J. Küppers, K. Wieghardt, Y.-H. Tsay, C. Krüger, B. Nuber, J. Weiss, Angew. Chem. 1987, 99, 583; Angew. Chem. Int. Ed. Engl. 1987, 26, 575.

Engl. 1987, 26, 575.

[5] [5a] J. Clarkson, R. Yagbasan, P. J. Blower, S. C. Rawle, S. R. Cooper, J. Chem. Soc., Chem. Commun. 1987, 970. — [5b] P. J. Blower, J. A. Clarkson, S. C. Rawle, J. R. Hartmann, R. E.

Wolf, R. Yagbasan, S. G. Bolt, S. R. Cooper, *Inorg. Chem.* 1989, 28, 4040

28, 4040.
H. W. Roesky, E. Peymann, J. Schimkowiak, M. Noltemeyer, W. Pinkert, G. M. Sheldrick, J. Chem. Soc., Chem. Commun. 1983, 981.

[7] P. G. Jones, T. Gries, H. Grützmacher, H. W. Roesky, J. Schimkowiak, G. M. Sheldrick, Angew. Chem. 1984, 96, 357; Angew. Chem. Int. Ed. Engl. 1984, 23, 376.

Angew. Chem. Int. Ed. Engl. 1984, 23, 376.

8 J. S. Bradshaw, C. W. McDaniel, B. D. Skidmore, R. B. Nielsen, B. E. Wilson, N. K. Dalley, R. M. Izatt, J. Heterocycl. Chem. 1987, 24, 1085.

[9] A. J. Blake, G. Reid, M. Schröder, J. Chem. Soc., Chem. Commun. 1992, 1074.

[10] A. J. Blake, R. O. Gould, C. Radek, M. Schröder, J. Chem. Soc., Chem. Commun. 1994, 985.

[11] N. K. Dalley, S. B. Larson, J. S. Smith, K. L. Matheson, R. M. Latt, J. J. Christensen, J. Heterocycl. Chem. 1981, 18, 463.

[12] H.-J. Holdt, J. Teller, Z. Chem. 1988, 28, 249.

[13] H.-J. Drexler, H. Reinke, H.-J. Holdt, manuscript in preparation.

[14] H. Hartung, R. Ahnert, D. Schollmeyer, H.-J. Holdt, J. Teller, J. Prakt. Chem. 1992, 334, 155.

[15] H.-J. Holdt, Pure Appl. Chem. 1993, 65, 477.

[16] H.-J. Holdt, Habilitationsschrift, Universität Rostock, 1991

[17] K. Gloe, H. Stephan, H.-J. Drexler, H.-J. Holdt, in preparation.
[18] J. W. Sibert, S. J. Lange, C. Stern, B. M. Hoffmann, A. G. M. Barrett, J. Chem. Soc., Chem. Commun. 1994, 1751.

Barrett, J. Chem. Soc., Chem. Commun. 1994, 1751.

[19] [19a] B. de Groot, S. J. Loeb, G. K. H. Shimizu, Inorg. Chem.

1994, 33, 2663. — [19b] S. J. Loeb, G. K. H. Shimizu, Inorg. Chem. 1993, 32, 1001. — [19c] B. de Groot, H. A. Jenkins, S. J. Loeb, Inorg. Chem. 1992, 31, 203. — [19d] B. de Groot, S. J. Loeb, Inorg. Chem. 1991, 30, 3103.

[20] [20a] A. J. Blake, D. Collinson, R. O. Gould, G. Reid, M. Schröder, J. Chem. Soc., Dalton Trans. 1993, 521. — [20b] A. J. Blake, R. O. Gould, G. Reid, M. Schröder, J. Chem. Soc., Chem.

Commun. 1990, 974.

[21] J. J. H. Edema, H. T. Stock, J. Butter, R. M. Kellog, W. J. J. Smeets, A. L. Spek, F. v. Bolhuis, Angew. Chem. 1993, 105, 448; Angew. Chem. Int. Ed. Engl. 1993, 32, 436.

[22] M. Kubota, D. L. Johnston, J. Am. Chem. Soc. 1966, 88, 2451. [23] J. W. Sibert, S. J. Lange, D. J. Williams, A. G. M. Barrett, B.

M. Hoffmann, Inorg. Chem. 1995, 34, 2300.

[24] Other details of the crystal structure of compounds [Ag(mn-15S₂O₃)]ClO₄, [3]ClO₄, and [Ag(mn-18S₂O₄)₂]PF₆, [4]PF₆, can be ordered from the authors or at Karlsruhe (CSD-404456 and CSD-404457).

[25] R. Heber, E. Hoyer, J. Prakt. Chem. 1976, 318, 19.

[26] G. M. Sheldrick, SHELXL-93, Universität Göttingen, 1993. [95180]